科研训练 理科
Project Base Learning Science
- 有机化学——结构、反应和合成
- 以相关性统计及机器学习分析亚...
- 机体发育与癌症病变中的转录调...
- 神经科学与认知心理学:意识和...
- 天文学前沿探秘 - 系外行星遨...
- 分子生物学:分子层面的记忆和...
以相关性统计及机器学习分析亚原子物理
Learning about the Subatomic World through Correlations
Gunther Roland
麻省理工学院物理系终身教授
(1)麻省理工学院重离子实验室主任
(2)麻省理工学院重离子研究组等7个研究小组CO-PI(联合领导人)
(3)人类近20年最大量子物理实验计划sPHENIX计划两位领导人之一
(4)MIT同行评测全球前三量子物理学家,兼任美国能源部布鲁克海文国家核物理实验室首席科学家
课题背景
原子理论是物理学与化学中有关物质本质的科学理论。与物质无限可分的概念相反,依据原子理论,物质是由一个个离散单元原子所构成。原子起初是自然哲学中的概念。西方对于原子的称呼来自于古希腊语的ατομος。而中文中,原子早前的译名“莫破”也来源于此。原子这一概念由于与基督教教义抵触一度被弃置,直到近代才被重拾。
课题内容
学生将分作两组来进行亚原子物理学论文的学习研究,包括讨论理论概念,实验方法和实验结果,并做出研究报告。研究报告结果以演讲的形式展现。同时教授会进行C++,root和科学数据分析法的基础授课,让学生有能力更好的进行研究。
适合人群
对物理专业感兴趣的高中生,本科生
修读数学、物理、计算机等专业,以及未来希望在理论物理研究、教育等领域从业的学生
具备数学基础的学生优先
建议提前掌握Python或C语言等专业知识
教授介绍
Gunther Roland
麻省理工学院物理系终身教授
(1)麻省理工学院重离子实验室主任
(2)麻省理工学院重离子研究组等7个研究小组CO-PI(联合领导人)
(3)人类近20年最大量子物理实验计划sPHENIX计划两位领导人之一
(4)MIT同行评测全球前三量子物理学家,兼任美国能源部布鲁克海文国家核物理实验室首席科学家
任职学校
麻省理工学院是位于美国马萨诸塞州剑桥市的私立研究型大学。截止2018年10月,麻省理工学院的校友、教授及研究人员包括了93位诺贝尔奖得主、8名菲尔兹奖获奖者、25位图灵奖得主,以及52位国家科学奖章获奖者、45位罗德学者、38名麦克阿瑟奖得主。2017-18年度,麻省理工学院位列QS世界大学排名世界第一、USNews世界大学排名世界第二、世界大学学术排名(ARWU)世界第四、泰晤士高等教育世界大学排名世界第五。2018年6月,《泰晤士高等教育》公布世界大学声誉排名,麻省理工学院排名世界第二、仅次于哈佛大学。
课程安排与收获
• 8周在线小组科研(总课时78小时)
• 网申推荐信
• 学术评估报告
• 项目成绩单
• 论文成果
课纲
Title: Introduction to subatomic physics
Research method:
Atomic theory, the notion that matter consists of indivisible smallest particles, dates back several thousand years. It took until in the early 20th century for technological, theoretical and experimental advances to allow a systematic investigation of the nature of atomic and subatomic particles, leading to our current model of the fundamental interactions of nature - the Standard Model.
In this course we will discuss the experimental foundations of our modern understanding of the microscopic nature of matter. This will include basic concepts of particle accelerators and particle detectors, as well as discussion of selected seminal experiments in subatomic physics. We will discuss the particles and interactions that form the Standard Model of fundamental physics and the important concepts all known interactions have in common. Particular emphasis will be placed on the phenomenology of the strong interaction and the understanding of matter at the highest densities and temperatures, the Quark- Gluon Plasma.
Generally, the course will discuss the main physical principles, concepts and experimental observations behind our understanding of nature at a subatomic level. We will mostly NOT require advanced mathematical concepts (e.g., differential equations, group theory, tensor algebra etc). The lectures will be complemented by student work related to three research proposals. For all proposals, student work will be guided by lectures and discussion on scientific communication (papers and presentations), principles of scientific data analysis, statistics and scientific programming and modeling.
Pre-requisites:
We will use scientific software frameworks such as Spyder (Python) or ROOT (C++):
These can be downloaded at https://www.spyder-ide.org and https://root.cern.ch To participate in the course each student will need a laptop with one of these software frameworks (or equivalent packages) installed
Reference materials: Textbooks:
The Experimental Foundations of Particle Physics (R. Cahn, G. Goldhaber) Subatomic Physics (E. Henley, A. Garcia)
Introduction to High Energy Physics (D. Perkins)
Review articles:
Concepts of Heavy-Ion Physics (U. Heinz) https://arxiv.org/abs/hep- ph/0407360v1
Quark-Gluon Matter (D. d'Enterria) https://arxiv.org/abs/nucl-ex/0611012
Software:
Any introduction to basic programming concepts and skills
Research projects:
For all research projects, the work will be guided by introductory lectures on scientific programming and data analysis, including the estimation of statistical and systematic uncertainties. The analysis results will be presented in oral presentations and in short papers, guided by lectures on oral and written scientific communication. Emphasis will be places on the importance of scientific collaboration.
A model of nuclear collisions: Develop an implementation of the Glauber Monte-Carlo model describing collisions of atomic nuclei at close to the speed of light. Investigate how refinements to the model change its description of data from the experiments at the Large Hadron Collider at the CERN laboratory. The resulting model implementation will be employed in the other projects as well.
The densest matter in the universe: Can one understand why strongly interacting particles lose energy as they travel through extremely hot matter (the Quark-Gluon Plasma) by combining different types of measurements? We will compile experimental results from the experiments at the Large Hadron Collider, analyze open data from the ALICE experiment and develop phenomenological models to search for a common description of data on single particles and on particle jets, as well as data on particle correlations.
Investigating the perfect liquid: If one heats nuclear matter to several trillion degree Kelvin the resulting Quark-Gluon Plasma behaves like an almost perfect liquid. We will perform correlation analyses using open data from the ALICE experiment and try to explain the results using the Glauber model of the initial collision state to understand the properties of the liquid better.